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Abstract
We consider the inverse ellipsometric problem for a transparent layer on top of an isotropic
substrate, which may consist of an arbitrary number of plane parallel homogeneous layers with
complex refractive indexes, or have an arbitrary depth profile variation of the complex refractive
index. It is shown that the task of finding the top layer parameters can be split into two. First,
the top layer dielectric constant is determined by the roots of a fifth degree polynomial and then
the layer thickness is found. Error propagation analysis is provided on a sample system and the
stability of the method is estimated.

S Supplementary data are available from stacks.iop.org/JPhysCM/20/285225

1. Introduction

Ellipsometry is a precise noncontact and nondestructive
method for investigation of the optical properties of different
systems like bulk materials, thin films and multilayer
structures. It is based on the detection of the change in the light
polarization after interaction with a sample. Data treatment
is based on a model that most closely describes the real
system under investigation. When all the model parameters
are known, the system optical response can usually be
computed uniquely; this represents the forward ellipsometric
task. More interesting however, is the inverse problem,
where some system parameters (such as, for example, layer
refractive index and thickness and/or refractive index depth
profile) are considered as unknown, and have to be found
from the experimentally measured ellipsometric quantities.
Nonlinearity complicates the inverse problem considerably.
In many cases a nonlinear minimization is the only choice.
In such an approach [1], a suitably chosen measure of the
experimental and model data misfit (a merit function) is
minimized by varying the model parameters. Some general
drawbacks are inherent to the nonlinear minimization, of
which maybe the most critical is that it does not guarantee
finding solutions in all situations. Usually the number of the
solutions is not a priori known and the procedure may not

find all the mathematical solutions corresponding to the global
minima. This may be further complicated by the existence
of local minima. As the solution of the inverse ellipsometric
problem is usually not unique, it is very important to find
all the mathematical solutions in order to select among them
physically meaningful ones. As a consequence of the above,
the minimization approach is not time deterministic, making it
unsuitable for important ellipsometric applications such as real
time parameter estimation and closed loop process control [2].

For some simple, but practically important systems, there
are analytical solutions of the inverse ellipsometric problem:
(1) a two-phase system with unknown complex refractive index
of one of the phases [3]; (2) a single layer system with
unknown layer thickness [3]; (3) a multilayer system with
unknown thickness of any one of the layers [4]; (4) a single
layer system with unknown complex refractive index of the
substrate [5]; (5) a symmetric system of one layer of unknown
thickness and real refractive index embedded in two identical
phases having a real refractive index [6]. All these inversions
lead to mathematical tasks of solving polynomials of a degree
less than 5, and thus can be termed ‘analytical’.

In several other cases, the problem can also be reduced to
a simpler task of finding the roots of a polynomial, but with
a degree higher than 4. Although this is not an analytical
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solution, it has clear advantages over the standard minimization
procedures. Finding the polynomial roots is well established
numerical task and it gives all the possible solutions of the
system [7]. The known polynomial solutions are: (6) an
arbitrary multilayer system with unknown thicknesses of the
any two layers [8]; (7) a one layer (3 phase) system with a
uniform nonabsorbing [9] or an absorbing [10] substrate with
unknown real refractive index and layer thickness.

In previous papers treating case (7) [9, 10], the fifth degree
polynomials are derived using model dependent parameters
(the Fresnel reflection coefficients for the boundary transparent
layer/substrate). In this paper we consider a generalization of
this case, using the generalized Fresnel reflection coefficients
of the substrate in the incident medium. This effectively
decouples the solution procedure from the model of the
substrate structure, allowing the determination of the refractive
index and thickness of a top transparent layer on an arbitrary
substrate. This task has been discussed already, but in the
thin layer limit [11]. Even for this approximate solution the
polynomial degree is relatively high (8th order). Here we show
that for this inverse ellipsometric problem the layer dielectric
constant satisfies (exactly, in the frame of the given model) a
fifth degree polynomial. Thus the initial task is split into two—
first, finding the layer dielectric constant (or equivalently, the
layer refractive index) as the roots of a 5th degree polynomial
and second—the determination of the corresponding layer
thickness.

2. Derivation of the fifth degree polynomial

The system under consideration is a transparent top layer on a
substrate consisting of an arbitrary number of plane parallel
isotropic homogeneous layers with (generally) complex
refractive indexes or, more generally, of a semi-infinite
medium with an arbitrary plane parallel depth profile of the
refractive index. The system is situated in a nonabsorbing
ambient. The unknown parameters are the real refractive
index and the thickness of the top layer. The above stated
ellipsometric task is of great practical importance, for example
when using ellipsometry for open or closed loop control
in applications involving multiple layer deposition (optical
coatings, filters), etching processes and others [2].

The optical response of such system is fully described by
the complex amplitude reflection coefficients Rp and Rs for the
two fundamental p- and s-linear polarizations. Conventional
reflection ellipsometry gives partial information, determining
the so called ellipsometric ratio ρ, or equivalently the two
ellipsometric angles � and �:

ρ = tg�ei� = Rp/Rs . (1)

Equation (1) connects the experimentally measured
quantities � and � with the optical system response—ratio
of the reflection coefficients, which are functions of the system
parameters. Further the indexes 0, 1 and 2 will be used for
the ambient (refractive index n0), the topmost layer (refractive
index n1 and thickness d1, considered as unknown), and the
underlying system respectively—figure 1(a).

Figure 1. The structure under consideration with unknown top layer
parameters (refractive index n1 and thickness d1)—(a). The
underlying system is fully described by the generalized Fresnel
coefficients (R02,p/s) according to the ambient—(b).

The complex amplitude reflection coefficients Rp and
Rs can be expressed by the top layer parameters and the
underlying system optical response [12]:

Rp/s = r01 p/s + R12,p/s Z

1 + r01 p/s R12,p/s Z
, (2)

Z = exp

[
−i

4πd1n1 cos ϕ1

λ

]
, (3)

r01 p = n1 cos ϕ0 − n0 cos ϕ1

n1 cos ϕ0 + n0 cos ϕ1
, (4)

r01s = n0 cos ϕ0 − n1 cos ϕ1

n0 cos ϕ0 + n1 cos ϕ1
, (5)

where r01 p/s are the Fresnel reflection coefficients at the
boundary 0/1 and R12,p/s are the generalized Fresnel reflection
coefficients at the boundary 1/2, λ is the wavelength and i is
the imaginary unit. The angle of incidence ϕ0 and the angle
of refraction ϕ1 (in the top layer) are connected by Snell’s law:
n0 sin ϕ0 = n1 sin ϕ1.

In equation (2) the unknown thickness appears only
in the expression for Z , while all coefficients Z , r01 p/s

and R12,p/s depend on the unknown layer refractive index.
In order to reduce the number of terms, which contain
the unknown variables, it is convenient to express the
generalized Fresnel coefficients (R12,p/s) for the boundary
unknown layer/underlying system by the reflection coefficients
(R02,p/s) of the underlying system according to the ambient—
figure 1(b). In the case when the top layer thickness tends to
zero (respectively Z → 1), the reflection coefficients (2) of the
system can be written as Rp/s = R02,p/s . Then the coefficient
R12,p/s can be expressed as:

R12,p/s = R02,p/s − r01 p/s

1 − r01 p/s R02,p/s
. (6)

The coefficients R02,p/s are regarded further as known and
the underlying system below the layer is fully described by
them. This means that the presented solution of the inverse
problem is applicable in the very general case of the underlying
structure—the only requirement is that its scattering matrix
is diagonal in the p/s presentation [3]. The coefficients
R02,p/s can be computed easily by recursion, provided the
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underlying system parameters are known [13], or found from
data treatment of previous ellipsometric measurements on the
same system without the top layer. In the latter case, the
procedure, described here, can be applied recursively for every
next (transparent) top layer. The substitution of R12,p/s from
equation (6) into (2) gives an expression for Rp/s , where the
unknown parameters appear only in r01 p/s and Z :

Rp/s = r01 p/s(1 − r01 p/s R02,p/s) + (R02,p/s − r01 p/s)Z

(1 − r01 p/s R02,p/s) + r01 p/s(R02,p/s − r01 p/s)Z
. (7)

To reduce further the number of terms containing the
unknown refractive index, let us express the Fresnel coefficient
r01 p through r01s [14]:

r01 p = r01s
r01s − cos(2ϕ0)

1 − r01s cos(2ϕ0)
= x

x − c

1 − xc
, (8)

where for further brevity c = cos(2ϕ0) and x = r01s .
From (7) we obtain

Rs = x(1 − x As) + (As − x)Z

(1 − x As) + x(As − x)Z
, (9)

Rp = {x(x − c)[1 − xc − x(x − c)A p] + [A p(1 − xc)

− x(x − c)](1 − xc)Z}{[1 − xc − x(x − c)A p](1 − xc)

+ x(x − c)[A p(1 − xc) − x(x − c)]Z}−1, (10)

where the substitutions A p = R02,p and As = R02,s have been
made.

Substituting the expressions for Rs and Rp from
equations (9) and (10) into (1) results in a polynomial
expression, in which the degree of x is six and of Z
is two:

a01 Z x6 + (a12 + a11 Z + a10Z 2)x5 + (a22 + a21Z+a20 Z 2)x4

+ (a30 + a31 Z + a30 Z 2)x3 + (a20 + a21 Z + a22 Z 2)x2

+ (a10 + a11 Z + a12 Z 2)x + a01 Z = 0, (11)

where
a01 = (A p − ρ As);
a10 = −(ρ + c);
a11 = 2c(ρ As − A p) − (1 + ρc)As A p + ρ + c;
a12 = (1 + ρc)As A p;
a20 = Asc + c2 + ρ As + 2ρc − ρ A pc + 1 − A pc2;
a21 = A pc2 + A pρ As − 2ρc + 2ρ A pc + 2As A pc − c2

+ ρ As A pc2 − 1 − ρ Asc2 − 2Asc;
a22 = ρ Asc2 − A pρ As − ρ As A pc2 + Asc − 2As A pc

− A p − ρ A pc;
a30 = ρ A pc2 + A pρ − c − 2ρ Asc + 2A pc − ρc2+ρ As A pc

+ As A pc2 − As − Asc2;
a31 = 2As + 2ρc2 + 2c − 2As A pc2 − 2ρ A pc2 − 2ρ A p

+ 2Asc2 − 2ρ As A pc.

(12)

Equation (11) is a 6th degree polynomial of a real
variable (x) with complex coefficients and along with its

conjugated polynomial they both can be used to reduce the
degree by eliminating any one of the polynomial terms. As
the leading and the constant terms in (11) are the same,
they both can be canceled simultaneously, thus reducing the
resulting polynomial degree by 2. In the complex conjugated
polynomial it is used that Z∗ = 1/Z (the symbol ∗ denotes
complex conjugation), which holds true when n0 and n1 are
real and the condition n2

1 > n2
0 sin2 ϕ0 is satisfied. Finally this

leads to a new polynomial in the form:

AZ 2 + B Z + C = 0, (13)

where the coefficients A, B and C are all 4th degree
polynomials of x :

A = (a01a∗
12 − a∗

01a10)x4 + (a01a∗
22 − a∗

01a20)x3

+ (a01a∗
30 − a∗

01a30)x2 + (a01a∗
20 − a∗

01a22)x

+ a01a∗
10 − a∗

01a12

B = (a01a∗
11 − a∗

01a11)x4 + (a01a∗
21 − a∗

01a21)x3

+ (a01a∗
31 − a∗

01a31)x2 + (a01a∗
21 − a∗

01a21)x

+ a01a∗
11 − a∗

01a11

C = (a01a∗
10 − a∗

01a12)x4 + (a01a∗
20 − a∗

01a22)x3

+ (a01a∗
30 − a∗

01a30)x2 + (a01a∗
22 − a∗

01a20)x

+ a01a∗
12 − a∗

01a10.

(14)

It can be shown that the identity A + B + C = 0,
holds true for any value of x . This allows factorization of the
equation (13):

(Z − 1)(AZ + A + B) = 0. (15)

The factorization at this stage of the procedure simplifies
the derivation of the polynomial, a step of which it has not
been taken advantage in previous works [8, 9]. The solution
Z = 1 of (15) corresponds to a special case when the
layer thickness is equal to zero, or to a multiple thickness
period Dϕ = λ/(2n1 cos ϕ1) and the layer refractive index is
undeterminable. This situation is easily detectable, because
when Z = 1, the measured quantity is ρ = R02,p/R02,s .
Assuming that Z �= 1 gives a linear equation for Z : AZ +
A + B = 0. Using its conjugated expression and the fact that
the coefficient B from (14) is pure imaginary, we obtain

Z = −A∗/A. (16)

Equation (16) can be used for direct computation of the
thickness if the corresponding layer refractive index is known.

Note that the coefficient A from (14) has a symmetric
form:

A = a1x4 + b1x3 + c1x2 − b∗
1x − a∗

1 , (17)

where
a1 = a01a∗

12 − a∗
01a10;

b1 = a01a∗
22 − a∗

01a20;
c1 = a01a∗

30 − a∗
01a30.

(18)

3
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Finally, by consecutive substitution of equations (16)
and (17) in (9), we split the task and obtain an expression
for Rs , which depends only on one unknown parameter (x).
The resulting expression has a 6th degree polynomial in the
numerator and the denominator. A common multiplier (x2 −1)
can be canceled (assuming that x2 = r 2

01s < 1) and then

Rs = t4x4 + t3x3 + t2x2 + t3x + t4
p4x4 + p3x3 + p2x2 + p3x + p4

, (19)

where
t2 = b1 + b∗

1 − As(c1 + a∗
1 + a1);

t3 = a1 + a∗
1 − Asb1;

t4 = −Asa1;
p2 = a1 + a∗

1 − c1 − As(b1 + b∗
1);

p3 = b∗
1 − As(a1 + a∗

1);
p4 = a∗

1 .

(20)

The same procedure can be applied by substitution of
equation (16) in (10) and the final result is the ratio of two
polynomials of 6th degree:

Rp = q6x6 + q5x5 + q4x4 + q3x3 + q4x2 + q5x + q6

s6x6 + s5x5 + s4x4 + s3x3 + s4x2 + s5x + s6
,

(21)
where

q3 = (b1 + b∗
1)(1 + c2) − 2c(a1 + a∗

1 ) − A p[(b1 + b∗
1)c

2

+ b1 − b∗
1 − 2ca1 − 2c(c1 + a∗

1 )];
q4 = (a1 + a∗

1)(1 + c2) − (b1 + b∗
1)c − A p[(a1 + a∗

1 )c
2

+ a1 + c1 − 2cb1];
q5 = −A p(b1 − 2ca1) − c(a1 + a∗

1);
q6 = −A pa1;
s3 = (b1 + b∗

1)c
2 + 2c(c1 − a1 − a∗

1) + b∗
1 − b1

+ A p[2c(a1 + a∗
1) − (b1 + b∗

1)(1 + c2)];
s4 = (a1 + a∗

1)c
2 + a∗

1 − c1 − 2cb∗
1 + A p[(b1 + b∗

1)c

− (a1 + a∗
1 )(1 + c2)];

s5 = A pc(a1 + a∗
1 ) − 2ca∗

1 + b∗
1;

s6 = a∗
1 .

(22)

The numerators and denominators in the expressions for
Rs , equation (19) and Rp, equation (21) are of even degree and
have a symmetric form

αn xn+αn−1xn−1+· · ·+αn/2xn/2+· · ·+αn−1x+αn = 0. (23)

It can be shown that an nth degree polynomial of this kind
can be recast as an (n/2)th degree polynomial of a new variable
(w = x +1/x), thus dividing the degree by two (see appendix).
In our case

w = x + 1/x = 2(ε1 + ε0 cos(2ϕ0))/(ε0 − ε1), (24)

where ε0 = n2
0 and ε1 = n2

1
are the ambient and the top layer

dielectric constants, respectively. In terms of the new variable
w the equations (19) and (21) take the form

Rs = t4w2 + t3w + t2 − 2t4
p4w2 + p3x + p2 − 2p4

, (25)

and

Rp = q6w
3 + q5w

2 + (q4 − 3q6)w + q3 − 2q5

s6w3 + s5w2 + (s4 − 3s6)w + s3 − 2s5
, (26)

where the polynomial coefficients are already defined in
equations (20) and (22).

Finally, substituting (25) and (26) in (1) we obtain a 5th
degree polynomial for w

m5w
5 + m4w

4 + m3w
3 + m2w

2 + m1w + m0 = 0, (27)

with coefficients

m0 = ρ(t2 − 2t4)(s3 − 2s5) − (q3 − 2q5)(p2 − 2p4);
m1 = ρ[t3(s3 − 2s5) + (t2 − 2t4)(s4 − 3s6)]

− (q4 − 3q6)(p2 − 2p4) − p3(q3 − 2q5);
m2 = ρ[t4(s3 − 2s5) + t3(s4 − 3s6) + s5(t2 − 2t4)]

− q5(p2 − 2p4) − p3(q4 − 3q6) − p4(q3 − 2q5);
m3 = ρ[t4(s4 − 3s6) + t3s5 + s6(t2 − 2t4)] − q6(p2 − 2p4)

− q5 p3 − p4(q4 − 3q6);
m4 = ρ(t4s5 + t3s6) − q6 p3 − q5 p4;
m5 = ρt4s6 − q6 p4.

(28)

The five polynomial roots (27) give through equation (24)
five mathematical solutions for the layer dielectric constant:

ε1 = ε0[w − 2 cos(2ϕ0)]/(w + 2). (29)

From this set of mathematical solutions complex solutions
should be excluded, as they do not satisfy the initial
assumptions.

The coefficients in (27), as derived above, are complex but
for them the following relation holds:

m∗
l /ml = K , l = 0 − 5,

ml = 2 Re(ml)/(1 + K ),
(30)

where K is a complex constant. The common complex multi-
plier 2/(1 + K ) can be divided out, making (27) equivalent to
a polynomial with real coefficients. Consequently, the number
of physical solutions may be 5, 3 or 1, as the complex roots
of (27) appear in conjugated pairs. For any physical solution
the corresponding thickness can be computed from (3):

d1 = iλ ln(Z)

4πn1 cos ϕ1
+ kλ

2n1 cos ϕ1
, (31)

where Z is determined from equations (16) and (17), k is
an integer and the thickness is determined up to a multiple
thickness period Dφ = λ/(2n1 cos ϕ1) as usual for a
transparent layer [3].

4
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Table 1. Five polynomial solutions for the test. (Note: Simulation is for an angle of incidence 70◦, wavelength 632.8 nm, system: dielectric
layer (n1 = 1.49, d1 = 50)/silver layer (n2 = 0.06–4.15i, d2 = 20 nm)/glass substrate (n3 = 1.52). The ellipsometric angles at these
conditions are � = 42.0793 and � = 79.0312.)

Solution
Polynomial roots
w equation (27)

Layer dielectric
constant, ε1

Layer refractive
index, n1

Layer thickness d1

(nm) Comment

1 −2.3835 2.2201 1.4900 50.0000 True solution
2 −1.4538 0.1433 0.3786 27.2516 + 183.9885i Non-physical
3 −1.7141 −0.6366 0.7979i 11.0873 Non-physical
4 −1.9773 − 0.0447i −3.2287 − 8.3169i 1.6871 − 2.4648i 3.0261 + 25.1677i Non-mathematical
5 −1.9773 + 0.0447i −3.2287 + 8.3169i 1.6871 + 2.4648i −21.2200 − 13.8665i Non-mathematical

As mentioned already, the above inversion procedure is a
generalization of the polynomial solution for determination of
the parameters of a transparent layer on top of a homogeneous
semi-infinite substrate, which was described previously in [10].
Both solutions are equivalent in case of simple substrate.

3. Special case of reflection above the critical angle of
the layer

For the special case when the index of the layer is lower than
the index of the ambient media, the condition n2

1 > n2
0 sin2 ϕ0

is not satisfied for angles of incidence greater than the critical
angle of the 0/1 boundary. In this situation Z no longer has a
modulus 1, but becomes real, in a contradiction with the initial
assumption for the derivation of the polynomial. On the other
side x = r01s becomes complex with modulus 1. The detailed
calculations (not given here) shown that in this case the layer
dielectric constant again satisfies the polynomial (27) with the
same coefficients (28). This means that the determination of
the layer dielectric constant (respectively the refractive index)
can be treated uniquely using polynomial (27) in both cases.

For the determination of the layer thickness the
equation (16) Z = −A∗/A is no longer valid, but for the
coefficients of A and B (14) the following relation holds true

ak + bk = a∗
k , k = 0 − 4. (32)

Inserting (32) in (15), the expression for Z takes the form

Z = −
∑

k

a∗
k xk

/∑
k

ak xk, (33)

and the thickness is determined once again from equation (31).

4. Error propagation analysis

The polynomial inversion was tested on different multilayer
structures using computer simulated data. The model
considered here is a dielectric layer—metal layer—dielectric
substrate system. The parameters were chosen as follows:
ambient—air (n0 = 1); top dielectric layer—n1 = 1.49,
d1 = 50 nm; metal layer (Ag) n2 = 0.06–4.15i [15], d2 =
20 nm; substrate (glass) n3 = 1.52 [16]. The values of the
five solutions for the top layer dielectric constant along with
their corresponding refractive indexes and thicknesses at angle
of incidence 70◦ are given in table 1. Two of the polynomial
roots appear as a complex conjugate couple and consequently

Figure 2. Scatter in refractive index values produced by the
uniformly distributed error of 0.1◦ in � and 0.2◦ in � for the
described system. Solid line—the exact value. Upper curve
corresponds to the physical solution.

can be rejected, as they do not satisfy the initial mathematical
assumptions. The other three roots are real in the range from
0◦ to 90◦. One of them (solution 3 from table 1) is negative and
the corresponding refractive index is purely imaginary and can
be rejected also. Solution (2) gives refractive index less than
1 and complex thickness and consequently can be rejected.
Thus in this case, a unique solution (1 from table 1) can be
selected from the set of the five mathematical solutions of the
initial problem. It should be noted that this uniqueness is not
warranted in every situation, then the selection of the correct
root can be based on preliminary information, or by multiangle
ellipsometric measurements.

To test the stability of the procedure on the described
system, the ellipsometric angles (� and �) were simulated in
a wide range of incident angles from 0◦ to 90◦ at a wavelength
632.8 nm with a uniformly distributed error (0.1◦ in � and
0.2◦ in �). These errors are much larger than the usually
achievable accuracy of an ellipsometric device (0.01◦ in �

and 0.02◦ in �), but here they are chosen to demonstrate the
stability of the solution. The refractive indexes of the two
real roots are plotted on figure 2. The physical solution (1)
is stable over the whole angle of incidence region, while the
false root corresponding to solution (2) changes continuously
from 0 (near 0◦) to 0.5 (near 90◦). The thickness corresponding
to the lower refractive index (solution 2) is pure imaginary and

5
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Figure 3. Scatter in the thickness values corresponding to the
refractive index from figure 2 (upper curve). Solid line—the exact
value. The thickness values, corresponding to the lower curve in
figure 2 are complex.

the only one remaining is the true value (solution 1), shown
on figure 3. The exact values of the layer parameters are also
shown with solid lines on figures 2 and 3. The following
features can be observed.

(1) There is a large range of angles of incidence with a
minimum error, where the deviation in refractive index is
±0.01 and in the thickness is ±2 nm.

(2) The uniform spread of errors at low angles of incidence in
the ellipsometric quantities � and � causes a nonuniform
spread in the layer parameters.

(3) At angles of incidence near normal and oblique the
scattering of the refractive index and layer thickness
values are much larger than at the center of the region.

The stability of the solution was tested also in the case of
smaller layer thickness (5 nm, or d/λ = 0.008). The errors
introduced in the ellipsometric angles were chosen according
to the usual accuracy of an ellipsometric device (0.01◦ in � and
0.02◦ in �). The results show that at angle of incidence 70◦ at
wavelength 632.8 nm the refractive index computed using the
polynomial inversion procedure is 1.49±0.05 and the thickness
is 5.0 ± 0.2 nm.

Along with the stability of the algorithm, the error
propagation analysis is useful for the determination of the
optimal experimental conditions. Such a preliminary analysis
should be performed on every particular model system under
investigation. For example, in the above described situation at
wavelength of 632.8 nm, an angle of incidence between 50◦
and 70◦ seems to be the best choice, as the deviation of the
layer parameters from their exact values is minimal.

A computer program, written in Scilab (www.scilab.
org), incorporating the above described method of the
polynomial inversion for the parameters of a top transparent
layer is provided in the supplementary material (available
at stacks.iop.org/JPhysCM/20/285225).

5. Conclusion

In conclusion, for the first time we showed that the inverse
ellipsometric problem for finding the layer refractive index and
the thickness of a transparent layer on an arbitrary isotropic
substrate could be split in two separate tasks. The first part
of the problem is reduced to a fifth degree polynomial for
the layer dielectric constant from which the corresponding
thickness is computed. The polynomial inversion procedure
gives all possible mathematical solutions, among which the
physical one can be easily selected. Error propagation analysis
demonstrates that the solution stability over small variations of
the input data is good and the method can be successfully used
for the determination of the top layer parameters.
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Appendix

Let us have a symmetric polynomial of even degree

α4x4 + α3x3 + α2x2 + α3x + α4 = 0. (A.1)

At x �= 0 we can write:

x2

[
α4

(
x2 + 1

x2

)
+ α3

(
x + 1

x

)
+ α2

]
= 0. (A.2)

Using the substitutions;

w = x + 1/x,

x2 + 1

x2
=

(
x + 1

x

)2

− 2 = w2 − 2,
(A.3)

in (A.2), the polynomial in the parenthesis is reduced to a
second degree polynomial of w:

α4w
2 + α3w + α2 − 2α4 = 0. (A.4)

The procedure is analogous for a sixth degree polynomial:

x3

[
α6

(
x3 + 1

x3

)
+ α5

(
x2 + 1

x2

)
+ α4

(
x + 1

x

)
+ α3

]

= 0. (A.5)

Using the equations from (A.3) and

x3 + 1

x3
=

(
x + 1

x

)3

− 3

(
x + 1

x

)
= w3 − 3w, (A.6)

the final form of the polynomial (A.5) in terms of the new
variable w becomes

α6w
3 + α5w

2 + (α4 − 3α6)w + α3 − 2α5 = 0. (A.7)

6

http://www.scilab.org
http://www.scilab.org
http://www.scilab.org
http://www.scilab.org
http://www.scilab.org
http://www.scilab.org
http://www.scilab.org
http://www.scilab.org
http://www.scilab.org
http://www.scilab.org
http://www.scilab.org
http://www.scilab.org
http://www.scilab.org
http://www.scilab.org
http://stacks.iop.org/JPhysCM/20/285225


J. Phys.: Condens. Matter 20 (2008) 285225 S C Russev et al

References

[1] Jellison G Jr 1993 Thin Solid Films 234 416
[2] Bulkin P, Daineka D, Kouznetsov D and Drevillon B 2004

Eur. Phys. J. Appl. Phys. 28 235
[3] Azzam R M A and Bashara N M 1977 Ellipsometry and

Polarized Light (Amsterdam: North-Holland)
[4] Russev S C and Georgieva D D 1991 J. Mod. Opt. 38 1217
[5] Russev S C, Boyanov M I, Drolet J-P and Leblanc R M 1999

J. Opt. Soc. Am. A 16 1496
[6] Lekner J 1990 J. Opt. Soc. Am. A 7 1875
[7] Forsythe G E, Malcolm M A and Moler C B 1977 Computer

Methods for Mathematical Computations (Englewood Cliffs,
NJ: Prentice-Hall)

[8] Russev S C, Mircheva I, Drolet J-P, Ducharme D and
Leblanc R M 1996 J. Opt. Soc. Am. A 13 152

[9] Lekner J 1994 Appl. Opt. 33 5159
[10] Drolet J-P, Russev S C, Boyanov M I and Leblanc R M 1994

J. Opt. Soc. Am. A 11 3284
[11] Kouznetsov D, Hofrichter A and Drevillon B 2002 Appl. Opt.

41 4510
[12] Born M and Wolf E 1999 Principles of Optics

(Cambridge: Cambridge University press)
[13] Scandonne F and Ballerini L 1946 Nuovo Cimento 5 81
[14] Azzam R M A 1979 J. Opt. Soc. Am. 69 1007
[15] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[16] Bass M (ed) 1995 Handbook of Optics vol 2

(New York: McGraw-Hill)

7

http://dx.doi.org/10.1016/0040-6090(93)90298-4
http://dx.doi.org/10.1051/epjap:2004191
http://dx.doi.org/10.1080/09500349114551381
http://dx.doi.org/10.1364/JOSAA.16.001496
http://dx.doi.org/10.1364/AO.41.004510
http://dx.doi.org/10.1103/PhysRevB.6.4370

	1. Introduction
	2. Derivation of the fifth degree polynomial
	3. Special case of reflection above the critical angle of the layer
	4. Error propagation analysis
	5. Conclusion
	Acknowledgment
	Appendix
	References

